
Preparation of Pyrazole and Pyrazoline Derivatives by Intramolecular Reaction of Hydrazones

Jing-Kang SHEN and Hajime KATA YAMA*

Niigata College of Pharmacy, 5-13-2 Kamishin'e-Cho, Niigata 950-21

Pyrazole and pyrazoline derivatives are prepared by the intramolecular cyclization reaction of a hydrazonyl group with formyl or keto groups in the presence of a Lewis acid.

Currently we are working with pyrazolo[1,5-a]indoles¹⁾ and are in need to have a versatile method to construct this skeleton. Inspired by the report of Roskamp and Pedersen,²⁾ we have investigated the intramolecular reaction of hydrazonyl group with formyl group to find a general method for the preparation of pyrazole and pyrazoline derivatives as shown below. Two reaction conditions (R.C.) were used to effect this scheme - A: Refluxing an equimolar mixture of aldehyde-hydrazone **1** and $\text{NbCl}_3\text{-DME}$ complex in THF for 1 h under dry argon; B: Treating **1** with an equivalent $\text{BF}_3\text{-Et}_2\text{O}$ in CH_2Cl_2 at 0-5 °C for a few hours. Reaction condition A gives pyrazoles **3** and B gives either pyrazolines **2** or pyrazoles **3**. The products and the yields are summarized in Table 1. For the preparation of **5**, only reaction condition B was effective. The hydrazone derived from a methyl ketone did not react in these conditions. An attempt of intermolecular reaction failed. Hydrazones **1** were prepared in good yields by the oxidation of the corresponding alcohols. Swern procedure was used when the *para* substituent X is electron-donating and the Parikh-Doering procedure was employed for the substrate bearing an electron-attracting group.³⁾ When R is alkyl or electron-rich aryl group (X = NMe₂), the hydrazones **1** can not survive in oxidative conditions. Pyrazoline **6a** was isolated along with **4a** when reaction condition A was conducted at room temperature. Pyrazoline **6a** readily underwent dehydration into **4a** by treating with either one of the above two reagents in refluxing THF. The *trans* stereochemistry between H-3 and H-3a in **6a** was deduced from the coupling constant (*J* = 2.4 Hz) of H-3 (δ 5.34, d) as well as the NOE spectrum (β H-4/H-3) and further confirmed by X-ray analysis of its LiAlH₄ reduction and N-methylation product. Thus, $\text{NbCl}_3\text{-DME}$

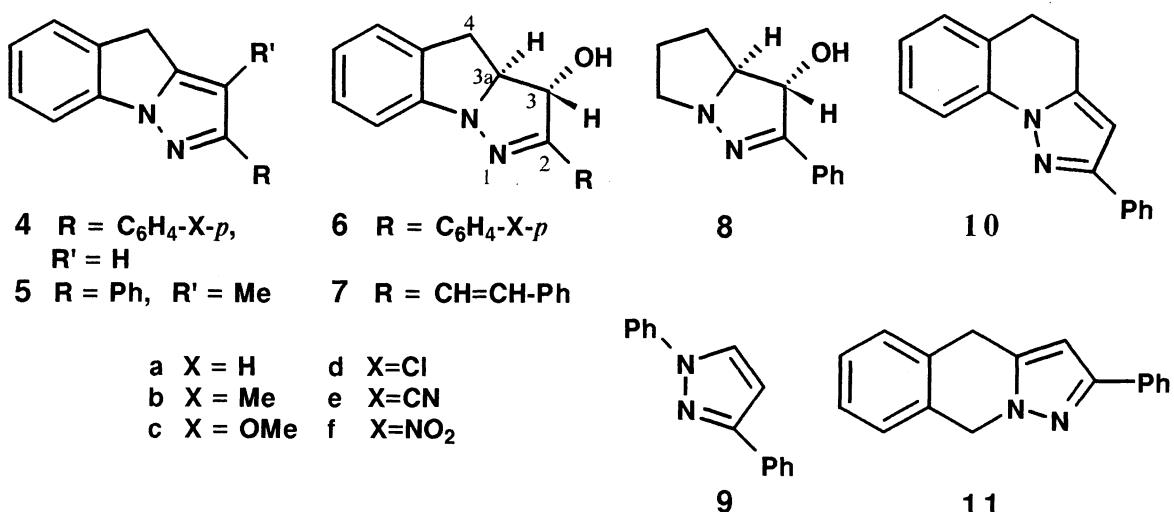


Table 1. Yields of Pyrazoles and Pyrazolines

Products	R.C.	Yield/%	Products	R.C.	Yield/%	Products	R.C.	Yield/%
4a	A	64	4f	A	63	7	B	63
4b	A	69	5	B	81	8	B	44
4c	A	73	6a	B	96	9	B	86
4d	A	63	6c	B	81	10	B	90
4e	A	64	6f	B	79	11	B	81

complex did not work as a reductive coupling agent but did as a Lewis acid to coordinate on the carbonyl oxygen of 1. Then the hydrazone carbon added to the carbonyl group⁴⁾ to lead to the *trans* 3,3a-configuration. The adducts 2 were then dehydrated into pyrazoles 3. Pyrazolines 2 are available only when the dehydration is slow. The above method is novel^{5,6)} and pyrazolines 2 can be the potential precursors for the syntheses of biologically active 4-hydroxypyrazole derivatives.⁶⁾

References

- 1) H. Katayama, N. Takatsu, H. Kitano, and Y. Shimaya, *Chem. Pharm. Bull.*, **38**, 1129 (1990).
- 2) E. Roskamp and S. F. Pedersen, *J. Am. Chem. Soc.*, **109**, 6551 (1987).
- 3) T. T. Tidwell, *Synthesis*, **1990**, 857.
- 4) J. Buckingham, *Quart. Rev. (London)*, **23**, 37 (1969).
- 5) L. C. Behr, R. Fusco, and C. H. Janboe, "The Chemistry of Heterocyclic Compounds," ed by R. H. Wiley, John Wiley & Sons (1967), Vol. 22.
- 6) G. M. Pilling, R. H. Bell, and R. E. Johnson, *Tetrahedron Lett.*, **29**, 1341 (1988); M. Begtrup and P. Nytoft, *J. Chem. Soc., Perkin Trans. I*, **1985**, 81.

(Received November 6, 1991)